Universality in algorithmic self-assembly

نویسندگان

  • Scott Summers
  • Scott Martin Summers
  • Giora Slutzki
  • John Mayfield
  • Pavan Aduri
چکیده

Tile-based self-assembly is a model of “algorithmic crystal growth” in which square “tiles” represent molecules that bind to each other via specific and variable-strength bonds on their four sides, driven by random mixing in solution but constrained by the local binding rules of the tile bonds. In the late 1990s, Erik Winfree introduced a discrete mathematical model of DNA tile assembly called the abstract Tile Assembly Mode. Winfree proved that the Tile Assembly Model is computationally universal, i.e., that any Turing machine can be encoded into a finite set of tile types whose self-assembly simulates that Turing machine. In this thesis, we investigate tile-based self-assembly systems that exhibit Turing universality, geometric universality and intrinsic universality. We first establish a novel characterization of the computably enumerable languages in terms of self-assembly–the proof of which is a novel proof of the Turing-universality of the Tile Assembly Model in which a particular Turing machine is simulated on all inputs in parallel in the two-dimensional discrete Euclidean plane. Then we prove that the multiple temperature tile assembly model (introduced by Aggarwal, Cheng, Goldwasser, Kao, and Schweller) exhibits a kind of “geometric universality” in the sense that there is a small (constant-size) universal tile set that can be programmed via deliberate changes in the system temperature to uniquely produce any finite shape. Just as other models of computation such as the Turing machine and cellular automaton are known to be “intrinsically universal,” (e.g., Turing machines can simulate other Turing machines, and cellular automata other cellular automata), we show that tile assembly systems satisfying a natural condition known as local consistency are able to simulate other locally consistent tile assembly systems. In other words, we exhibit a particular locally consistent tile ix assembly system that can simulate the behavior–as opposed to only the final result–of any other locally consistent tile assembly system. Finally, we consider the notion of universal fault-tolerance in algorithmic self-assembly with respect to the two-handed Tile Assembly Model, in which large aggregations of tiles may attach to each other, in contrast to the seeded Tile Assembly Model, in which tiles aggregate one at a time to a single specially-designated “seed” assembly. We introduce a new model of faulttolerance in self-assembly: the fuzzy temperature model of faults having the following informal characterization: the system temperature is normally 2, but may drift down to 1, allowing unintended temperature-1 growth for an arbitrary period of time. Our main construction, which is a tile set capable of uniquely producing an n × n square with O(log n) unique tile types in the fuzzy temperature model, is not universal but presents novel technique that we hope will ultimately pave the way for a “universal fuzzy-fault-tolerant” tile assembly system in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic universality in tile self-assembly requires cooperation

We prove a negative result on the power of a model of algorithmic self-assembly for which it has been notoriously difficult to find general techniques and results. Specifically, we prove that Winfree’s abstract Tile Assembly Model, when restricted to use noncooperative tile binding, is not intrinsically universal. This stands in stark contrast to the recent result that, via cooperative binding,...

متن کامل

Intrinsic universality and the computational power of self-assembly

Molecular self-assembly, the formation of large structures by small pieces of matter sticking together according to simple local interactions, is a ubiquitous phenomenon. A challenging engineering goal is to design a few molecules so that large numbers of them can self-assemble into desired complicated target objects. Indeed, we would like to understand the ultimate capabilities and limitations...

متن کامل

Intrinsic Universality in Self-Assembly

We show that the Tile Assembly Model exhibits a strong notion of universality where the goal is to give a single tile assembly system that simulates the behavior of any other tile assembly system. We give a tile assembly system that is capable of simulating a very wide class of tile systems, including itself. Specifically, we give a tile set that simulates the assembly of any tile assembly syst...

متن کامل

Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-assembly in Two and Three Dimensions

Winfree’s pioneering work led the foundations in the area of errorreduction in algorithmic self-assembly[26], but the construction resulted in increase of the size of assembly. Reif et. al. contributed further in this area with compact error-resilient schemes [15] that maintained the original size of the assemblies, but required certain restrictions on the Boolean functions to be used in the al...

متن کامل

Algorithmic DNA Self-assembly

Self-assembly is a process by which simple objects autonomously assemble into complexes. This phenomenon is common in nature but is not yet well understood from mathematical and programming perspectives. It is believed that self-assembly technology will ultimately permit the precise fabrication of complex nanostructures. There are many kinds of self-assembly and DNA self-assembly is of particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015